Sagot :
Réponse :
Explications étape par étape
Bonjour
démontrer que la somme des carrés de deux nombres consécutifs est impair :
n : un nombre
n + 1 : le nombre consécutif
= n^2 + (n + 1)^2
= n^2 + n^2 + 2n + 1
= 2n^2 + 2n + 1
= 2(n^2 + n) + 1
On a déjà :
2(n^2 + n) qui est pair puisque multiplié par 2
Et comme on ajoute 1, le résultat est donc impair puisque à un nombre pair si on ajoute 1, celui ci devient impair