Réponse:
on sait que
[tex] \tan(x )= sin(x) \div \cos(x) [/tex]
d'où
[tex] \sin(x) = \cos(x) \times \tan(x) [/tex]
[tex] { \sin(x) }^{2} = { \cos(x) }^{2} \times { \tan(x) }^{2} [/tex]
[tex] { \cos(x) }^{2} + { \sin(x) }^{2} = 1[/tex]
[tex] { \cos(x) }^{2} = 1 - { \sin(x) }^{2} [/tex]
[tex] \: \: \: \: = 1 - { \cos(x) }^{2} { \tan(x) }^{2} [/tex]
[tex] { \cos(x) }^{2} + { \cos(x) }^{2} { \tan(x) }^{2} = 1[/tex]
[tex] { \cos(x) }^{2} (1 + { \tan(x) }^{2} ) = 1[/tex]
[tex] { \cos(x) }^{2} = 1 \div (1 + { \tan(x) }^{2} )[/tex]