PROBLÈME Les parents de Charlotte souhaitent l’inscrire dans le club d’équitation le plus proche de chez eux. Le club leur propose trois formules différentes : • Formule A : 18 ( la séance. • Formule B : 165 ( par carte de 10 séances. • Formule C : Paiement d’une cotisation annuelle de 70 ( plus 140 ( par carte de 10 séances. Partie 1 1. Vérifier que le coût pour 7 séances est de 126 ( pour la formule A, 165 ( pour la formule B et 210 ( pour la formule C. 2. Calculer le coût de 20 séances pour ces trois formules. Quelle est la formule la plus avantageuse dans ce cas ? Partie 2 Charlotte désirant faire du cheval toute l’année, ses parents décident de comparer les formules B et C. 1. Reproduire et compléter le tableau suivant sur votre copie. Aucune justification n’est demandée. 1 carte 2 cartes 5 cartes PRIX Formule B Formule C 2. Soit x le nombre de cartes de 10 séances achetées. a. Exprimer en fonction de x le coût pour la famille si elle choisit la formule B. b. Exprimer en fonction de x le coût pour la famille si elle choisit la formule C. c. Résoudre l’inéquation suivante 140x +70 6 165x. d. À partir de combien de cartes achetées, la formule C devient-elle avantageuse ? Partie 3 1. Dans le repère, fourni en annexe, construire les représentations graphiques des fonctions f et g définies par : f : x 7−→165x (Prix avec la formule B) ; g : x 7−→140x+70 (Prix avec la formule C). 2. Dans cette question, on fera apparaître les tracés utiles en pointillés. Retrouver graphiquement le nombre de cartes à partir duquel la formule C devient avantageuse.