Sagot :
Je ne pas compris mais je peux vous donner un exemple de comment appliquer si c est sa 1. Développer, ordonner et réduire A+B et A-B:
A = (x-1)2 - 4
B = 3(x-3)(x+5)
A+B = (x-1)2 - 4 + 3(x-3)(x+5)
A+B = x2-2x+1-4 + 3(x2+5x-3x-15)
A+B = x2- 2x + 1- 4 + 3x2+15x-9x-45
A+B = 4x2+4x-48
( A+B = 4 (x2+x-12) )
A-B= (x-1)2 - 4 - 3(x-3)(x+5)
A-B = x2-2x+1-4 - 3(x2+5x-3x-15)
A-B = x2 -2x -3 -3x2 -15x +45
A-B = -2x2 - 17x + 42
2. Factoriser A+B, puis A-B
A+B = (x-1)2 - 4 + 3(x-3)(x+5)
A+B = (x-1-2)(x-1+2) + 3(x-3)(x+5)
A+B = (x-3)(x+1) + 3(x-3)(x+5)
A+B = (x-3)[(x+1)+3(x+5)]
A+B = (x-3)(4x+16)
A+B = 4(x+4)(x-3)
A-B = (x-1)2 - 4 - 3(x-3)(x+5)
A-B = (x-1-2)(x-1+2) - 3(x-3)(x+5)
A-B = (x-3)(x+1) - 3(x-3)(x+5)
A-B = (x-3)[(x+1)-3(x+5)]
A-B = (x-3)(-2x-14)
A-B = -2(x+7)(x-3)
3. Calculer...:
A pour x = √2
B pour x = -√3
A-B pour x = -1
A = (x-1)2 - 4
A = x2- 2x+ 1- 4
A = (√2)2 -2√2 -3
A = -2√2 -1
B = 3(x-3)(x+5)
B = 3x2+15x-9x-45
B = 3(-√3)2 + 6(-√3) -45
B = 9 - 6√3 - 45
B = -6√3 - 36
A-B = -2(x+7)(x-3)
A-B = -2(-1+7)(-1-3)
A-B = -2 X 6 X -4
A-B = 2 X 6 X 4
A-B = 48
A = (x-1)2 - 4
B = 3(x-3)(x+5)
A+B = (x-1)2 - 4 + 3(x-3)(x+5)
A+B = x2-2x+1-4 + 3(x2+5x-3x-15)
A+B = x2- 2x + 1- 4 + 3x2+15x-9x-45
A+B = 4x2+4x-48
( A+B = 4 (x2+x-12) )
A-B= (x-1)2 - 4 - 3(x-3)(x+5)
A-B = x2-2x+1-4 - 3(x2+5x-3x-15)
A-B = x2 -2x -3 -3x2 -15x +45
A-B = -2x2 - 17x + 42
2. Factoriser A+B, puis A-B
A+B = (x-1)2 - 4 + 3(x-3)(x+5)
A+B = (x-1-2)(x-1+2) + 3(x-3)(x+5)
A+B = (x-3)(x+1) + 3(x-3)(x+5)
A+B = (x-3)[(x+1)+3(x+5)]
A+B = (x-3)(4x+16)
A+B = 4(x+4)(x-3)
A-B = (x-1)2 - 4 - 3(x-3)(x+5)
A-B = (x-1-2)(x-1+2) - 3(x-3)(x+5)
A-B = (x-3)(x+1) - 3(x-3)(x+5)
A-B = (x-3)[(x+1)-3(x+5)]
A-B = (x-3)(-2x-14)
A-B = -2(x+7)(x-3)
3. Calculer...:
A pour x = √2
B pour x = -√3
A-B pour x = -1
A = (x-1)2 - 4
A = x2- 2x+ 1- 4
A = (√2)2 -2√2 -3
A = -2√2 -1
B = 3(x-3)(x+5)
B = 3x2+15x-9x-45
B = 3(-√3)2 + 6(-√3) -45
B = 9 - 6√3 - 45
B = -6√3 - 36
A-B = -2(x+7)(x-3)
A-B = -2(-1+7)(-1-3)
A-B = -2 X 6 X -4
A-B = 2 X 6 X 4
A-B = 48