Sagot :
bjr
1)
on trace la diagonale BD du carré
elle partage la partie hachurée en deux moitiés
l'aire d'une moitié est la différence entre l'aire du quart de disque
de centre A, de rayon a et celle du triangle ABD
aire quart de disque (disque : aire = π x r²)
ici r = a
A1 = (π x a²)/4
aire du triangle (AB x AD / 2)
ici AB + AD = a
A2 = a²/2
aire de la moitié de la partie hachurée
A1 - A2 = ( π x a²)/4 - a²/2
aire de la partie hachurée
A = 2 [( π x a²)/4 - a²/2] =
(π x a²)/2 - (2a²/2) =
[ πa² - 2a²] / 2 =
A = ( π - 2) a² / 2
2)
a = 6
A = ( π - 2) x 6² /2
= ( π - 2) x 18
= 20,5486677646.....
encadrement à 1 millième
20,548 < A < 20, 549
arrondi au centième
A = 20,55