Bonjour, j'aurais besoin d'aide sur un exercice de maths s'il vous plaît, je bloque dessus depuis très longtemps

On considère un trinômedu second degré P défini sur R par: P(x)=ax2 + bx + c.
La représentation graphique de P est donné ci-contre.
En utilisant cette représentations graphique,choisir pour chacune des questions suivantes la seule réponse exacte.
On se justifiera.

1) Le coefficient a est:
a) strictement positif
b)strictement négatif
c)on ne peut pas savoir

2) Le coefficient b est:
a)strictement positif
b)strictement négatif
c) on ne peux pas savoir

3)Le coefficient c est:
a)strictement positif
b)strictement négatif
c) on ne peux pas savoir

4)Le discriminant ∆ est:
a)strictement positif
b)strictement négatif
c) on ne peux pas savoir

5) La somme des coefficient a+b+c est:
a)strictement positif
b)strictement négatif
c) on ne peux pas savoir

Merci d'avance! :)


Bonjour Jaurais Besoin Daide Sur Un Exercice De Maths Sil Vous Plaît Je Bloque Dessus Depuis Très LongtempsOn Considère Un Trinômedu Second Degré P Défini Sur R class=

Sagot :

TENURF

Bonjour,

1)

Si a est nul, l'équation est celle d'une droite donc a est différent de 0 car le graphe n'est pas une droite

Tu peux voir sur le graphe que

[tex]\displaystyle \lim_{x\rightarrow +\infty} P(x)=-\infty \\ \\\lim_{x\rightarrow -\infty} P(x)=-\infty[/tex]

Donc le signe de a est négatif

Donc a < 0

2)

P(1)=a+b+c

P(-1)=a-b+c

donc P(1)-P(-1)=2b

P(1)-P(-1) est positif comme P(1) > 0 et P(-1) <0 donc b est positif

et P(1) est différent de P(-1) donc b est différent de 0

Donc b > 0

3)

P(0)=c et on voit que P(0)<0 donc c<0

4)

P(x)=0 a deux solutions distinctes comme le graphe coupe l'axe des abscisses en deux points donc le discriminant est strictement positif.

5)

P(1)=a+b+c >0

MErci