Bonjour à tous, Je suis sur un exercice et je bloque sur la question 1. J'ai calculé la distance AM², j'ai trouvé le trinôme, la forme canonique de AM mais je ne vois pas en quoi cela peut me servir pour répondre à la question. Je suis allée fouiner partout mais à chaque fois il n'y a pas d'explications là-dessus! Un coup de main? :) 

 



Sagot :

Bonjour,

 

J'espère qu'il est encore temps...

 

Si tu projettes le point M sur l'axe des abcsisses, tu obtient un point M'.

Le triangle AMM' est rectangle en M', on peut donc lui appliquer le théorème de Pythagore :

AM²=AM'²+MM'²

MM'=f(a)

AM'= a-1

AM²=(a-1)²+(f(a))²=

 

[tex]AM^2=(a-1)^2+(2\sqrt{a+2})^2[/tex]

 

AM²=a²-2a+1+4a+8=a²+2a+9

 

On cherche que AM² soit minimum.

AM² est une fonction de la forme ax²+bx+c

La courbe de AM² est une parabole et comme a est positif, la concavité est vers le haut, et sont sommet est un minimum.

L'ascisse du sommet est pour x=-b/2a

 

Donc le minimum de AM² est pour a= -2/2=-1

 

J'espère que tu as compris.

 

A+