👤

Maths expertes terminale
Bonsoir j’aimerais savoir la démarche pour savoir :
Comment montrer que
An : (n+1)(n+2)…(2n-1)2n est un multiple de 2^n

J’ai essayé de retourner la somme et de les additionner mais ça n’a pas de sens mais je cerne néanmoins qu’il n*2n
Merci beaucoup !

Sagot :

TENURF

Bonjour,

[tex]\forall n \in \mathb{N}\\ \\A_n=(n+1)(n+2)...(2n-1)2n\\A_{n+1}=(n+2)(n+3)...(2n)(2n+1)(2n+2)\\ \\\dfrac{A_{n+1}}{A_n}=\dfrac{(2n+1)(2n+2)}{n+1}=2(2n+1)[/tex]

Montrons que [tex]A_n[/tex] est un multiple de [tex]2^n[/tex]

Etape 1 - Initialisation

[tex]A_1=2\\\\2^1=2[/tex]

C'est vrai au rang 1

Etape - Hérédité

Supposons que cela soit vrai au rang k et montrons le au rang k+1

Comme

[tex]A_{k+1}=2(2k+1)A_k[/tex]

et que [tex]A_k[/tex] est un multiple de [tex]2^k[/tex] par hypothèse de récurrence, nous avons donc que [tex]A_{k+1}[/tex] est un multiple de [tex]2 \times 2^k=2^{k+1}[/tex]

Etape 3  - conclusion

Nous venons de démontrer que pour tout n entier non nul

[tex]A_n[/tex] est un multiple de [tex]2^n[/tex]

Merci

© 2024 IDNLearn. All rights reserved.