Sagot :
Bonjour,
Exo 1
[tex](3x+6)^2=(3x)^2+2\times 6 \times 3x + 6^2=9x^2+36x+36\\\\(x\sqrt{2}-1)(x\sqrt{2}+1)=(x\sqrt{2})^2-1^2=2x^2-1[/tex]
Exo 2
[tex](x-4)^2-(2x+5)^2=(x-4-2x-5)(x-4+2x+5)\\\\=(-x-9)(3x+1)=-(x+9)(3x+1)\\ \\\\\\9x^2-12x+4=(3x)^2-2\times 2 \times 3x +2^2=(3x-2)^2[/tex]
Exo3
On utilise le c
[tex](x+8)^2-9=(x+8)^2-3^2=(x+8-3)(x+8+3)=(x+5)(x+11)[/tex]
merci
☺ Salut ☺
✅EXO1
Soit x un réel quelconque, développons chacune des expressions :
[tex]A(x) = {(3x + 6)}^{2}[/tex]
[tex]\boxed{\boxed{A(x) = 9{x}^{2} + 36x + 36}}[/tex]✔
-----------------
[tex]B(x) = (x\sqrt{2} - 1)(x\sqrt{2} + 1)[/tex]
[tex]B(x) = {(x\sqrt{2})}^{2} - {(1)}^{2}[/tex]
[tex]B(x) = {(x)}^{2} \times {(\sqrt{2})}^{2} - {(1)}^{2}[/tex]
[tex]B(x) = {x}^{2}\times2 - {(1)}^{2}[/tex]
[tex]\boxed{\boxed{B(x) = 2{x}^{2} - 1}}[/tex]✔
✅EXO2
Soit x un réel quelconque, factorisons chacune des expressions :
[tex]C(x) = {(x - 4)}^{2} - {(2x + 5)}^{2}[/tex]
[tex]C(x) = [(x - 4) + (2x + 5)][(x - 4) - (2x + 5)][/tex]
[tex]C(x) = (x - 4 + 2x + 5)(x - 4 - 2x - 5)[/tex]
[tex]\boxed{\boxed{C(x) = (3x + 1)(- x - 9)}}[/tex]✔
-----------------
[tex]D(x) = 9{x}^{2} - 12x + 4[/tex]
[tex]\boxed{\boxed{D(x) = {(3x - 2)}^{2}}}[/tex]✔
✅EXO3
Pour factoriser [tex]{(x + 8)}^{2} - 9[/tex]
On utilise :
a. [tex]\:{a}^{2} + 2ab + {b}^{2} = {(a + b)}^{2}[/tex]
b. [tex]\:{a}^{2} - 2ab + {b}^{2} = {(a - b)}^{2}[/tex]
c. [tex]\boxed{\boxed{{a}^{2} - {b}^{2} = (a + b)(a - b)}}[/tex]✔