❑ On a :
ⓐ [tex]\:\:AB = CD = 45m[/tex]
ⓑ [tex]\:\:\hat{A} = 25\degree[/tex]
ⓒ [tex]\:\:h = DS = BS + BD[/tex]
ⓓ [tex]\:\:BD = 1,5m[/tex]
❑ On sait que :
[tex]\:\:tan\hat{A} = \dfrac{C.Opposé}{C.Adjacent}[/tex]
Alors :
[tex]\:\:tan\hat{A} = \dfrac{BS}{AB}[/tex]
[tex]\:\:tan\hat{A} = \dfrac{BS}{AB}[/tex]
[tex]\:\:tan25\degree = \dfrac{BS}{45}[/tex]
[tex]\:\:\dfrac{tan25\degree}{1} = \dfrac{BS}{45}[/tex]
[tex]\:\:BS = \dfrac{45 \times tan25\degree}{1}[/tex]
[tex]\:\:BS = 20,9m\:ou\:BS = 21m[/tex]
[tex]\:\:h = DS = BD + BS[/tex]
[tex]\:\:h = 1,50\:m + 21\:m[/tex]
✯[tex]\:\boxed{\boxed{h = 22,50\:mètres}}[/tex]✯