Réponse :
Explications étape par étape
Bonjour
Écrire sous forme irréductible :
A = (7^3 x 2^4 x 3^5)/(2^6 x 2^7 x 3^2)
A = 7^3 x 2^(4-6-7) x 3^(5-2)
A = 7^3 x 2^(-9) x 3^3
A = 7^3 x 3^3 / 2^9
A = 343 x 27 / 512
A = 9261/512
B = [(3 x 5)^3 x 2^(-2)] / (3^6 x 11^(-3) x 5^2]
B = 3^(3-6) x 5^(3-2) x 2^(-2) x 11^3
B = 3^(-3) x 5^1 x 2^(-2) x 11^3
B = (5 x 11^3) / (3^3 x 2^2)
B = (5 x 1331) / (27 x 4)
B = 6655 / 108
C = 10^7/(2^5 x 5^4)
C = (2 x 5)^7 / (2^5 x 5^4)
C = 2^(7-5) x 5^(7-4)
C = 2^2 x 5^3
C = 4 x 125
C = 500
D = [(13^3)^(-2) x 2^(-4)]/26^(-5)
D = 13^(3*(-2)) x 2^(-4) / (2 x 13)^(-5)
D = 13^(-6) x 2^(-4) / (2^(-5) x 13^(-5))
D = 13^(-6+5) x 2^(-4+5)
D = 13^(-1) x 2^1
D = 2/13