👤

Sagot :

Réponse :

L'entier naturel n est pair s'il existe un entier naturel k tel que n = 2 k

   //          //      //   //  impair  //   //    //     //        //       k'  //   //   n = 2 k' + 1

2020 est pair puisque 2020 = 2 k    avec  k = 1010

2021   //  impair  //        2021 = 2 k' + 1   avec  k' = 1010

compléter le tableau

                                  m + n           mn

m(p) et n(p)                    4 k              4 k²  

m(p) et n(imp)                4 k + 1         4 k²+ 2k

m(imp) et n(p)                4 k + 1         4 k² + 2 k

m(imp) et n(imp)            4 k + 2        4 k² + 4 k + 1

Montrer que pour tout entier naturel M = 3 n² +  n est pair

                  n  pair                                                     n impair

il existe un entier k tel que n = 2k    il existe un entier k' tel que n = 2k'+1  

M = 3 n² + n = 3(2k)² + 2 k                M = 3(2 k' + 1)² + 2 k' + 1

M = 12 k² + 2 k                                 M  = 12 k'² + 14 k' + 4              

M = 2 (6 k² + k)                                 M = 2(6 k'² + 7 k' + 2)  = 2 k"

il existe un entier naturel                 avec k" = 6 k'² + 7 k' + 2

k" = 6 k²+ k  donc  M = 2 k" est pair        donc  M est pair

                     

Explications étape par étape

© 2024 IDNLearn. All rights reserved.