s'il vous plaît je souhaiterais avoir votre aide pour résoudre ce problème, les notions d'involution et transvection me sont toujours étrangères et je trouve souvent du mal à gérer des problèmes qui impliquent ces notions.merci beaucoup à vous. (pour ce problème j'avais déjà démontrer que E = E 1 (U) ⊕ E −1 (U))
-Soit U une involution de E, c’est à dire U ∈ L (E) et U² = id E . On pose [tex]E_{1}[/tex](U) = Ker(U − id E ) et [tex]E_{-1}[/tex]U) = Ker(U + id E ). Dans cette question, on suppose que dim([tex]E_{1}[/tex] (U)) = 1. A) Soit a ∈ E tel que [tex]E_{1}[/tex](U) = R .a. Montrer qu’il existe φ ∈ L (E, R ) une forme linéaire de E telle que Ker(φ) = [tex]E_{-1}[/tex](U) et φ(a) = 2. B) En déduire qu’il existe a ∈ E et φ ∈ L (E, R ) tels que ∀x ∈ E, U(x) = −x + φ(x).a. C) Soit V une autre involution de E telle que [tex]E_{1}[/tex](U) = E[tex]E_{1}[/tex](V). *Montrer qu’il existe ψ ∈ L (E, R ) telle que ∀x ∈ E, V(x) = −x + ψ(x).a. *En déduire que U ◦ V est une transvection.