Sagot :
Réponse : Bonjour,
1) On a:
[tex]\displaystyle 2 \overrightarrow{BD}+3 \overrightarrow{CD}=8 \overrightarrow{AB}\\2 \overrightarrow{BD}=8 \overrightarrow{AB}-3 \overrightarrow{CD}\\\overrightarrow{BD}=4 \overrightarrow{AB}-\frac{3}{2} \overrightarrow{CD}\\\overrightarrow{BD}=4 \overrightarrow{AB}-\frac{3}{2}\left(\overrightarrow{CA}+\overrightarrow{AD}\right)=4 \overrightarrow{AB}+\frac{3}{2} \overrightarrow{AC}+\frac{3}{2} \overrightarrow{DA}[/tex]
[tex]\displaystyle \overrightarrow{BD}=\frac{5}{2} \overrightarrow{AB}+\frac{3}{2}\left(\overrightarrow{AB}+\overrightarrow{DA} \right)+\frac{3}{2} \overrightarrow{AC}=\frac{5}{2} \overrightarrow{AB}+\frac{3}{2} \overrightarrow{DB}+\frac{3}{2} \overrightarrow{AC}\\ \overrightarrow{BD}+\frac{3}{2} \overrightarrow{BD}=\frac{5}{2} \overrightarrow{AB}+\frac{3}{2} \overrightarrow{AC}\\ \frac{5}{2} \overrightarrow{BD}=\frac{5}{2} \overrightarrow{AB}+\frac{3}{2} \overrightarrow{AC}[/tex]
[tex]\displaystyle \overrightarrow{BD}=\frac{5}{2} \times \frac{2}{5} \overrightarrow{AB}+\frac{3}{2} \times \frac{2}{5} \overrightarrow{AC}\\\overrightarrow{BD}=\overrightarrow{AB}+\frac{3}{5} \overrightarrow{AC}[/tex]
2) On a:
[tex]\displaystyle \overrightarrow{AJ}=\overrightarrow{AI}+\overrightarrow{IJ}=\frac{1}{5} \overrightarrow{AC}\\\overrightarrow{IJ}=\frac{1}{5} \overrightarrow{AC}-\overrightarrow{AI}=\frac{1}{5} \overrightarrow{AC}-\overrightarrow{AB}-\overrightarrow{BI}=\frac{1}{5}\left(\overrightarrow{AB}+\overrightarrow{BC} \right)-\overrightarrow{AB}-\frac{1}{2} \overrightarrow{BC}\\ \overrightarrow{IJ}=-\frac{4}{5} \overrightarrow{AB}+\left(\frac{1}{5}-\frac{1}{2}\right) \overrightarrow{BC}[/tex]
[tex]\displaystyle \overrightarrow{IJ}=-\frac{4}{5} \overrightarrow{AB}-\frac{3}{10} \overrightarrow{BC}=-\frac{4}{5} \overrightarrow{AB}-\frac{3}{10} \left(\overrightarrow{BA}+\overrightarrow{AC} \right)\\\overrightarrow{IJ}=\left(-\frac{4}{5}+\frac{3}{10}\right) \overrightarrow{AB}-\frac{3}{10} \overrightarrow{AC}=-\frac{1}{2} \overrightarrow{AB}-\frac{3}{10} \overrightarrow{AC}[/tex]