Sagot :
Bonjour,
D'après l'énoncé, [tex]A = 1,771B[/tex].
Ensuite, puisqu'il s'agit d'un rectangle, son aire est de [tex]A \times B = 1,771 B \times B = 1,771B^2[/tex].
Or, cette aire vaut 3 304,8 m². Il faut alors résoudre une équation.
[tex]1,771B^2=3304,8\\B^2=\dfrac{3304,8}{1,771} \\B = \sqrt{\dfrac{3304,8}{1,771}} \\B \approx 43,2[/tex]
Ainsi, B mesure environ 43,2 mètres. Donc A vaut 1,771 fois B, soit 76,5 mètres environ.
Enfin,
A = 76,5 m = 765 dm
B = 43,2 m = 423 dm
Réponse :
l'aire du rectangle est : A x B = 3304.8
sachant que A = 1.771 x B
A : longueur du rectangle
B : largeur // //
1.771 x B² = 3304.8 ⇔ B² = 3304.8/1.771 ≈ 1866.06
d'où B = √(1866.06) ≈ 43.1979 m ≈ 43.20 m = 432 dm
donc A = 1.771 x 43.1979 = 76.50 m = 765 dm
Explications étape par étape