👤

Sagot :

Réponse :

Explications étape par étape

Bonjour

Résoudre les inéquations :

2x > x^3

x^3 - 2x < 0

x(x^2 - 2) < 0

x(x - V2)(x + V2) < 0 (avec V : racine de)

x........|-inf.............(-V2)......0........V2........+inf

x........|.........(-)................(-)..o...(+).........(+)........

x-V2.|..........(-)................(-).......(-)...o.....(+).......

x+V2|..........(-).........o.....(+)......(+)..........(+)......

Ineq.|...........(-)........o.....(+).o...(-)....o....(+)......

[tex]x \in ]-\infty ; -\sqrt{2}[ U ]0 ; \sqrt{2}[[/tex]

(x + 2)(6x - 1) < (x + 2)(x - 3)

(x + 2)(6x - 1) - (x + 2)(x - 3) < 0

(x + 2)(6x - 1 - x + 3) < 0

(x + 2)(5x + 2) < 0

x + 2 = 0 ou 5x + 2 = 0

x = -2 ou x = -2/5

x..........|-inf.........(-2)...........(-2/5).........+inf

x + 2...|........(-).....o.....(+)...............(+)..........

5x + 2|.........(-).............(-)........o.....(+).........

Ineq...|..........(+)...o......(-).........o.....(+)........

[tex]x \in ]-2 ; -2/5[[/tex]

(x + 1)^2 << 9

(x + 1)^2 - 3^2 << 0

(x + 1 - 3)(x + 1 + 3) << 0

(x - 2)(x + 4) << 0

x - 2 = 0 ou x + 4 = 0

x = 2 ou x = -4

x............|-inf..........(-4)..........2..........+inf

x - 2......|........(-).............(-).....o....(+)........

x + 4.....|.........(-)......o....(+)...........(+)........

Ineq......|........(+)......o.....(-).....o....(+).......

[tex]x \in [-4 ; 2][/tex]

(2x + 3)^2 - (-5x + 6)^2 < 0

(2x + 3 + 5x - 6)(2x + 3 - 5x + 6) < 0

(7x - 3)(-3x + 9) < 0

(7x - 3) * 3(-x + 3) < 0

3(7x - 3)(-x + 3) < 0

7x - 3 = 0 ou -x + 3 = 0

7x = 3 ou x = 3

x = 3/7 ou x = 3

x..............|-inf............3/7.............3.........+inf

7x - 3......|........(-)........o......(+)..........(+)........

-x + 3......|........(+).................(+)....o...(-)........

Ineq.......|.........(-)........o.......(+)...o.....(-).......

[tex]x \in ]-\infty ; 3/7[ U ]3 ; +\infty[[/tex]

© 2024 IDNLearn. All rights reserved.