Sagot :
Réponse :
Explications étape par étape
Bonjour
Il faut faire des tableaux de signes si tu as des doutes :
(2x+1)(6x+5)>0
2x+1 = 0 ou 6x+5 = 0
x = -1/2 ou x = -5/6
x..........|-inf.............(-5/6).........(-1/2).........+inf
2x+1....|.........(-)..................(-).......o......(+)........
6x+5...|.........(-)..........o......(+)..............(+)........
Ineq....|.........(+).........o.......(-).......o......(+).......
x € ]-inf;-5/6[ U ]-1/2;+inf[
(2-3x)(4x-1)<= 0
2-3x = 0 ou 4x-1=0
x=2/3 ou x = 1/4
x..........|-inf.............(1/4).........(2/3).........+inf
2-3x....|.........(+).................(+)....o......(-)........
4x-1.....|.........(-)..........o......(+)..............(+)........
Ineq....|.........(-).........o.......(+).......o......(-).......
x € ]-inf;1/4] U [2/3;+inf[
(x+2)/(-x+6) < 0
x+2 = 0 et -x+6 # 0
x = -2 et x # 6
x..........|-inf.............(-2)...............(6).........+inf
x + 2...|.........(-).........o......(+).............(+)........
-x+6....|.........(+).................(+)......o.....(-)..........
Ineq....|.........(-).........o.......(+)......||......(-).......
x € ]-inf;-2[ U ]6 ; +inf[
(3x-4)/(2x+3)>= 0
3x-4 = 0 et 2x+3 # 0
x = 4/3 et x # -3/2
x..........|-inf.............(-3/2).........(4/3).........+inf
3x-4....|.........(-)..........o.......(+).............(+)........
2x+3...|.........(-).................(-)........o......(+)........
Ineq....|.........(+).........||.......(-).......o......(+).......
x € ]-inf ; -3/2[ U [4/3 ; +inf[