Sagot :
Bonsoir,
J’espère tout d’abord que ton confinement se passe bien.
Pour répondre à cette question, il faut relever certaines données.
Sandrine = x billets
Oscar = 1/4 de Sandrine soit x*(1/4) = x/4 billets.
Thierry = 1/3 de Oscar soit ( 1/3 )*( x/4 ) = x/12
Dimitri = 1/2 de Thierry soit ( 1/2 )*( x/12 ) = x/24 )
Billet total = x + ( x/4 ) + ( x/12 ) + ( x/24 ) = x( 24 + 6 + 2 + 1 ) / 24 = 33x / 24.
Maintenant que nous savons la quantité de billet qu'ils avaient, nous devons déterminer combien avait Sandrine. Tout d'abord, il est indiqué qu'elle en a presque 100. Pour l'instant, nous avons 33x / 24 que nous devons transposer en entier.
Nous pouvons donc déduire que 33x est un multiple de 24.
En utilisant les nombres premiers, nous pouvons en déduire que :
24 = 2*2*2*3
33x = 3*11*x
Ici, seul le 3 est commun donc x doit être égal à 2^3 soit 2*2*2 = 8. Grâce à cela, nous pouvons donc déduire que 33x / 24 est égal à 33x*8 / 24 soit 11 or ici, nous avons conclu que x valait 8, chiffre qui n'est pas "presque égal à 100".
Enfin, on peut en déduire que le nombre de billet qu'aura Sandrine est le multiple de 8 se rapprochant le plus de 100 soit 8*12 = 96.
Au final, on en déduit que Sandrine a 96 billets et donc qu'ils ont en tout, 33*96 / 24 = 132 billets.
Merci à Saturne car j'avais mal lu l'énoncé et bonne soirée.