👤

Sagot :

Réponse :

Bonsoir

1) Calculons les coordonnées des vecteurs AB et NM

AB(10-2 ; 2-(-2)) ⇔ AB(8 ; 4)

NM(8-0 ; 6-2) ⇔ NM(8 ;4)

Les vecteurs AB et NM sont égaux,donc ABMN est un parallélogramme

2) AM = √[(8-2)² + (6-(-2))²] = √(36 + 64) = √100 = 10

   BN = √[(0-10)² + (2-2)²] = √100 = 10

BN = AM. Un parallélogramme dont les diagonales ont la même longueur est un rectangle . ABMN est donc un rectangle

3) AB = √[(10-2)² + (2-(-2))²] = √(64 + 16)  = √80 = 4√5

   BM = √[(8-10)² + (6-2)²] = √(4 + 16) = √20 = 2√5

Aire ABMN = AB × BM = 4√5 × 2√5 = 40

© 2024 IDNLearn. All rights reserved.