B(40)= 700 donc
[tex] - {(40 - 70)}^{2} + c = 700 \\ - 900 + c = 700 \\ c = 1600[/tex]
B(20):
[tex] - {(20 - 70)}^{2} + 1600 = \\ - 2500 + 1600 = \\ - 900[/tex]
Un déficit de 900€.
Donc le bénéfice maximal est quand x = 90
[tex] - {(90 - 70)}^{2} + 1600 = \\ - 400 + 1600 = \\ 1200[/tex]
Le bénéfice est nul quand :
[tex] - {(x - 70)}^{2} + 1600 = 0 \\ - {(x - 70)}^{2} = - 1600 \\ - x + 70 = - 40 \\ - x = - 110 \\ x = 110[/tex]