Sagot :
Réponse : Bonjour,
Exercice 4
1) D'une part:
[tex]R-S=-x^{2}+8x+30-(2x^{2}-11x+2)=-x^{2}+8x+30-2x^{2}+11x-2\\=-3x^{2}+19x+28[/tex]
D'autre part:
[tex](3x-7)(-x+4)=-3x^{2}+12x+7x-28=-3x^{2}+19x-28[/tex]
Je pense qu'il y a une erreur dans l'énoncé, car quand on fait R-S, on trouve 30-2=28, et non -28, suggéré dans le développement de (3x-7)(-x+4), où l'on calcule en autre -7*4=-28.
2) On calcule:
[tex]\displaystyle \frac{5}{6-x}+4=\frac{5+4(6-x)}{6-x}=\frac{5+24-4x}{6-x}=\frac{-4x+29}{6-x}=\frac{-(4x-29)}{-(-6+x)}=\frac{4x-29}{x-6}[/tex]
On a donc bien [tex]\displaystyle \frac{4x-29}{x-6}=\frac{5}{6-x}+4[/tex].
Exercice 5
1)
[tex]\displaystyle 5F-9C=160\\5F=160+9C\\F=\frac{160+9C}{5}=32+\frac{9}{5}C[/tex]
2)
[tex]\displaystyle F=32+\frac{9}{5}C\\ \frac{9}{5}C=F-32\\ C=\frac{F-32}{\frac{9}{5}}=(F-32) \times \frac{5}{9}=\frac{5(F-32)}{9}[/tex]
3) L'eau gèle quand C=0°, donc, d'après la question 1):
[tex]\displaystyle F=32+\frac{9}{5} \times 0=32[/tex]
Donc quand l'eau gèle, la température en degrés Fahrenheit est 32°F.
4) Convertissons la température de 41°F à Sacramento, en degrés Celsius.
D'après la question 2), on a:
[tex]\displaystyle C=\frac{5(F-32)}{9}=\frac{5(41-32)}{9}=\frac{5 \times 9}{9}=5\°C[/tex]
Il faisait donc plus froid à Sacramento.