Sagot :
Réponse : Bonsoir,
1)
[tex]\lim_{x \mapsto 0} \ln(x)=-\infty \quad \lim_{x \mapsto 0} x^{n}=0\\Donc \; \lim_{x \mapsto 0} f_{n}(x)=-\infty[/tex]
Par croissante comparée, pour tout entier naturel n:
[tex]\displaystyle \lim_{x \mapsto +\infty} \frac{\ln(x)}{x^{n}}=0[/tex]
Par suite, [tex]\lim_{x \mapsto +\infty} f_{n}(x)=0[/tex]
2)
[tex]\displaystyle f'_{n}(x)=\frac{\frac{1}{x} \times x^{n}-nx^{n-1}\ln(x)}{(x^{n})^{2}}=\frac{x^{n-1}-nx^{n-1}\ln(x)}{x^{2n}}=\frac{x^{n-1}(1-n\ln(x))}{x^{2n}}[/tex]
Sur l'intervalle ]0;+∞[, [tex]f'_{n}(x)[/tex], est du signe de [tex]1-n\ln(x)[/tex].
Etudions donc son signe:
[tex]1-n \ln(x) \geq 0\\n\ln(x) \leq 1\\\ln(x) \leq \frac{1}{n}\\e^{\ln(x)} \leq e^{\frac{1}{n}}\\x \leq e^{\frac{1}{n}}[/tex]
On a donc le tableau suivant:
x 0 [tex]e^{\frac{1}{n}}[/tex] +∞
[tex]f'_{n}(x)[/tex] + Ф -
[tex]f_{n}(x)[/tex] (croissant) [tex]y_{n}[/tex] (décroissant)
3) D'après le tableau de variations précédent, on en déduit que [tex]f_{n}[/tex] a un maximum en [tex]x_{n}=e^{\frac{1}{n}}[/tex], et ce maximum [tex]y_{n}[/tex], vaut:
[tex]\displaystyle y_{n}=f(x_{n})=f(e^{\frac{1}{n}})=\frac{\ln(e^{\frac{1}{n}})}{(e^{\frac{1}{n}})^{n}}=\frac{\frac{1}{n}}{e}=\frac{1}{ne}[/tex]
4) Regardons si les vecteurs [tex]\overrightarrow{A_{1}A_{2}}[/tex] et [tex]\overrightarrow{A_{2}A_{3}}[/tex], sont colinéaires.
On a:
[tex]A_{1}(e;\frac{1}{e}), A_{2}(e^{\frac{1}{2}};\frac{1}{2e}), A_{3}(e^{\frac{1}{3}}; \frac{1}{3e})\\\overrightarrow{A_{1}A_{2}}(e^{\frac{1}{2}}-e;\frac{1}{2e}-\frac{1}{e})=(e^{\frac{1}{2}}-e;-\frac{1}{2e}) \\\overrightarrow{A_{2}A_{3}}(e^{\frac{1}{3}}-e^{\frac{1}{2}};\frac{1}{3e}-\frac{1}{2e})=(e^{\frac{1}{3}}-e^{\frac{1}{2}};-\frac{1}{6e})\\(e^{\frac{1}{2}}-e) \times -\frac{1}{6e}+\frac{1}{2e}(e^{\frac{1}{3}}-e^{\frac{1}{2}})=\frac{e-e^{\frac{1}{2}}+3e^{\frac{1}{3}}-3e^{\frac{1}{2}}}{6e}[/tex]
[tex]=\frac{e-4e^{\frac{1}{2}}+3e^{\frac{1}{3}}}{6e}=\frac{e(1-4e^{-\frac{1}{2}}+3e^{-\frac{2}{3}})}{6e}=\frac{1-4e^{-\frac{1}{2}}+3e^{-\frac{2}{3}}}{6}[/tex]
A la calculatrice, [tex]1-4e^{-\frac{1}{2}}+3e^{-\frac{2}{3}} \ne 0[/tex], donc [tex]\frac{1-4e^{-\frac{1}{2}}+3e^{-\frac{2}{3}}}{6} \ne 0[/tex].
Les vecteurs [tex]\overrightarrow{A_{1}A_{2}}[/tex] et [tex]\overrightarrow{A_{2}A_{3}}[/tex], ne sont pas colinéaires, donc pour tout entier naturel n non nul, les points [tex]A_{n}[/tex], ne sont pas alignés.