Bonjour j’aurais besoin d’aide pour cette exercice de mathématiques niveau seconde à rendre pour demain !! Je suis complètement perdue
Le lien est ci dessous
Merci à toutes aides rapportées


Bonjour Jaurais Besoin Daide Pour Cette Exercice De Mathématiques Niveau Seconde À Rendre Pour Demain Je Suis Complètement Perdue Le Lien Est Ci Dessous Merci À class=

Sagot :

Réponse : Bonjour,

a) On sait que:

[tex]\cos^{2}(\widehat{H})+\sin^{2}(\widehat{H})=1\\\cos^{2}(\widehat{H})=1-\sin^{2}(\widehat{H})\\\cos^{2}(\widehat{H})=1-\frac{2}{4}=1-\frac{1}{2}=\frac{1}{2}[/tex]

b) Dans le triangle HKL rectangle en K:

[tex]\sin(\widehat{H})=\frac{LK}{HL}\\LK=HL \times \sin(\widehat{H})=8 \times \frac{\sqrt{2}}{2}=4\sqrt{2}[/tex]

De même:

[tex]\cos(\widehat{H})=\frac{HK}{HL}\\HK=HL \times \cos(\widehat{H})=8 \times \frac{\sqrt{2}}{2}=4\sqrt{2}[/tex]

c) Comme LK=HK, on en déduit que le triangle HKL est rectangle isocèle en K.

Comme ce triangle isocèle, on en déduit que les angles [tex]\widehat{H}[/tex] et [tex]\widehat{L}[/tex], sont égaux.

Comme la somme des angles d'un triangle est égale à 180°, alors:

[tex]\widehat{K}+\widehat{H}+\widehat{L}=180\°\\\widehat{K}+2\widehat{H}=180\° \quad car \; \widehat{H}=\widehat{L}\\2\widehat{H}=90\°\\\widehat{H}=45\°[/tex]

On en déduit donc que [tex]\widehat{H}=\widehat{L}=45\°[/tex].

Comme [tex]\sin(\widehat{H})=\frac{\sqrt{2}}{2}[/tex], on en déduit que [tex]\sin(45\°)=\frac{\sqrt{2}}{2}[/tex].

Enfin, comme [tex]\cos(\widehat{H})=\frac{\sqrt{2}}{2}[/tex], on en déduit que [tex]\cos(45\°)=\frac{\sqrt{2}}{2}[/tex].