👤

Sagot :

Explications étape par étape:

Let u= e^

3u^2-5u+5=0

Utilise la formule quadratique

[tex] - 3 + - ( \sqrt{ {( - 5)}^{2} - 4(1 \times 5) }) \div 2(3)[/tex]

[tex] - 3 + - ( \sqrt{25 - 20)} \div 6 \\ - 3 + - ( \sqrt{5} ) \div 6[/tex]

[tex]either \: u = - 3 + (\sqrt{5} ) \div 6 \: or \: u = - 3 - ( \sqrt{5} ) \div 6[/tex]

[tex]u = - 2.6273... \: or \: u = - 3.37262...[/tex]

[tex]therefore \: {e}^{x} = - 2.6273 \: or \: {e}^{x} = - 3.37262[/tex]

[tex]take \: ln \: on \: both \: sides \\ [/tex]

[tex] ln( {e}^{x} ) = ln( - 2.6273) \: or \: ln( {e}^{x} ) = ln( - 3.3762) [/tex]

[tex]x ln(e) = ln( - 2.6273) \: or \: x ln(e) = ln(- 3.3762)[/tex]

[tex] ln(e) cancels[/tex]

[tex]x = ln( - 2.6273) or \: x = ln( - 3.3762) [/tex]

[tex]no \: solutions \: as \: ln( - ve) \: does \: not \: exist[/tex]

© 2024 IDNLearn. All rights reserved.