👤

Sagot :

Réponse :

Bonjour

Explications étape par étape

Il faut commencer par définir A(x)

L'aire de OPMQ se calcule par OP×MP

OP = x

Dans le triangle MOP rectangle en P, on a OM² = OP² + PM² (Pythagore)

M étant sur le cercle, OM = 1

Donc OP² + PM² = 1 ⇔ x² + PM² = 1 ⇔ PM² = 1 - x² ⇔ PM = [tex]\sqrt{1-x^{2} }[/tex]

Donc A(x) = OP×PM = [tex]x\sqrt{1-x^{2} }[/tex]

Pour étudier les variations de A(x) , calculons sa dérivée

A'(x) = [tex]\frac{-2x^{2}+1 }{\sqrt{1-x^{2} } }[/tex]

Sur [0 ; 1] , la dérivée s'annule en [tex]\frac{\sqrt{2} }{2}[/tex]

Elle est positive sur [0 ; [tex]\frac{\sqrt{2} }{2}[/tex]] et négative sur [[tex]\frac{\sqrt{2} }{2}[/tex] ; 1]

Donc A(x) est croissante sur [0 ; [tex]\frac{\sqrt{2} }{2}[/tex]] et décroissante sur [[tex]\frac{\sqrt{2} }{2}[/tex] ; 1]

A(0) = 0 , A(1) = 0 et A([tex]\frac{\sqrt{2} }{2}[/tex]) = 0,5

L'aire maximum de OPMQ est donc de 0,5

© 2024 IDNLearn. All rights reserved.