Sagot :
Réponse :
Bonsoir
Explications étape par étape
y'a pas de flèches,mais il s'agira bien de vecteurs
1) MN = MA + AN (relation de Chasles)
⇔ MN = -AM + AC +CN = -1/3 AB + AC + 1/ CA
⇔ MN = 1/3 BA + AC - 1/3 AC = 1/3 BA + 2/3 AC
2) MP = MA + AP = MA + AC + CP
⇔ MP = 1/3 BA + AC + 1/3 BC = 1/3 BA + AC + 1/3(BA + AC)
⇔ MP = 1/3 BA + AC + 1/3 BA + 1/3 AC = 2/3 BA + 4/3 AC
3) MP = 2/3 BA + 4/3 AC = 2(1/3 BA + 2/3 AC) = 2 MN
MP et MN sont donc colinéaires .Les points M , N et P sont donc alignés
Exercice 2
1) vrai . si AB = 3 AC , les vecteurs AB et AC sont colinéaires, et les points A , B et C sont donc alignés
2) Faux . Si AB = 3 CD alors (AB) est parallèle à (CD).Pour que (AC) soit parallèle à (BD) , il aurait fallu que AB = CD (et donc ABDC parallélogramme)
3) vrai . si ABCD est un parallélogramme, DC = AB
donc DA + DC = DA + AB = AB
4) vrai . si ABCD est un trapèze , alors (AB) est parallèle à (DC). Donc les vecteurs AB et DC sont colinéaires.Il existe donc un réel k tel que AB =k CD