Vrai ou Faux ?
Pour justifier "Vrai" il faut démontrer la propriété dans le cas général. Pour "faux" il suffit de donner un contre-exemple.
1) La fonction f définie sur R par f(x)=e^u(x), où u est une fonction dérivable et positive sur R, est croissante.
2) La fonction f définie sur R par f(x)=e^u(x), où u est une fonction dérivable et croissante sur R, est croissante.
3)La fonction f définie sur R par f(x)=e^u(x), où u est une fonction dérivable et strictement négative sur R, est strictement positive.
4) La fonction f définie sur R par f(x)=e^-u(x), où u est une fonction dérivable sur R, est décroissante.
1. Faux car [tex]e^{x^{2}}[/tex] a pour dérivée [tex]2x.e^{x^{2}}[/tex]qui n(est pas toujours positive
2.Vrai, la dérivée de [tex]e^{u(x)} est u'(x).e^{u(x)}[/tex] si u(x) est croissante alors u'(x)est positive et la dérivée de [tex]e^{u(x)}[/tex] est positive donc la fonction initiale est croissante
3.Vrai une exponentielle est toujours positive
4.Faux soit [tex]e^{-sinx}[/tex] sa dérivée est [tex]-sinxcosx.e^{-sinx}[/tex] qui n'est pas constamment négative.