Bonsoir, J'ai un DM de mathématiques sur les fonctions mais je suis bloquée. Pourriez-vous m'aider s'il vous plaît. Voici l'énoncé : Une galerie d'arts va bientôt fêter ses 20 ans d'existence. Pour cette occasion, son propriétaire souhaite décorer la pièce principale d'un immense tableau de 4 mètres sur 3. Le peintre chargé de sa réalisation pense que, pour être harmonieux, ce grand tableau devra respecter la condition suivante : l'aire du contour (en blanc) devra être égale à l'aire de la partie peinte (en noir). On désigne x la largeur du contour (en mètres).
1. Exprimer l'aire du contour et l'aire de la partie peinte à l'aide de la variable x. 2. Montrer que la condition proposée par le peintre est réalisée si et seulement si : 2x au carré - 7x + 3 = 0
Je ne mets pas les autres questions étant donné que j'ai trouvé les réponses.
Alors pour la question 1, voilà ce que j'ai fait : Aire de la partie peinte : (4 - x) (3-x) j'ai développé et j'ai trouvé : x au carré - 7x + 12 Aire du contour : 4 X 3 - (x au carré - 7x + 12) = -x au carré + 7x
Et pour la question 2 : x au carré - 7x + 12 = -x au carré + 7x x au carré + x au carré - 7x -7x + 12 =0 2x au carré - 14x + 12 =0
Mon problème est le suivant : je n'ai pas trouvé le résultat attendu à la question 2. Pouvez-vous m'aider s'il vous plaît.
l'aire de la partie peinte n'est pas égale à (4-x)(3-x) mais à (4-2x)(3-2x) ! Ce qui nous donne : 12-8x-6x+12=4x²-14x+12 Aire du cadre : 12-(4x²-14x+12)=-4x²+14x
4x²-14x+12=-4x+14x 8x²-28x+12=0 2x²-7x+3=0 (on divise par 4 des deux cotés mais 0/4=0)