Sagot :
f(x)=ax²+bx+c
=a(x+b/(2a))²-Δ/(4a)
si Δ<0 on pose Δ=-d=i²d avec d>0
donc f(x)=a[(x+b/(2a))²-(i²d)/(4a²)]
=a[(x+b/(2a))²-(iVd/(2a))²]
=a(x-(-b-iVd)/(2a))(x+(-b+iVd)/(2a))
=a(x-(-b-iV(-Δ))/(2a))(x+(-b+iV(-Δ))/(2a))
=a(x+b/(2a))²-Δ/(4a)
si Δ<0 on pose Δ=-d=i²d avec d>0
donc f(x)=a[(x+b/(2a))²-(i²d)/(4a²)]
=a[(x+b/(2a))²-(iVd/(2a))²]
=a(x-(-b-iVd)/(2a))(x+(-b+iVd)/(2a))
=a(x-(-b-iV(-Δ))/(2a))(x+(-b+iV(-Δ))/(2a))
f(x)=ax²+bx+c
=a(x+b/(2a))²-Δ/(4a)
si Δ<0 on pose Δ=-d=i²d avec d>0
donc f(x)=a[(x+b/(2a))²-(i²d)/(4a²)]
=a[(x+b/(2a))²-(iVd/(2a))²]
=a(x-(-b-iVd)/(2a))(x+(-b+iVd)/(2a))
=a(x-(-b-iV(-Δ))/(2a))(x+(-b+iV(-Δ))/(2a))
=a(x+b/(2a))²-Δ/(4a)
si Δ<0 on pose Δ=-d=i²d avec d>0
donc f(x)=a[(x+b/(2a))²-(i²d)/(4a²)]
=a[(x+b/(2a))²-(iVd/(2a))²]
=a(x-(-b-iVd)/(2a))(x+(-b+iVd)/(2a))
=a(x-(-b-iV(-Δ))/(2a))(x+(-b+iV(-Δ))/(2a))