exercice 79:
1)sachant que le point M est sur AI, celui ci peut varier entre 0 et 8cm (longeur
maximale), donc x est compris dans l'intervalle [0;8]
Pour la question
3, tu commence par calculer NP en le décomposant : NP = 2 NM
D'après le
théorème de Thalès :
NM / BI = AM / AI
NM = 4 (8 - x)/_
NM = 4 +
1/2x
On peut maintenant calculer NP :
NP = 2NM
NP = 8 - x
Ensuite, on exprime les deux aires en fonction de x, ce qui donne :
f(x) = (AI*BP)/2 + (MI*BC)/2
f(x) = [(8-x)(8-x)]/2 + [8x]/2
f(x) =
[64 - 16x + x²]/2 + 4x
f(x) = 32 - 8x + 1/2 x² + 4x
f(x) = 32 - 4x +
1/2x²
Pour les questions 4a) et b), il te suffit de t'aider de la
calculatrice pour avoir une estimation du résultat : il faut que l'aire des deux
triangles f(x) soit égale a 80% de l'aire de ABC (ce qui donne égale à 25.8).
Normalement tu n'auras pas de mal à trouver cela à l'aide du graphique.
Pour la 5a) tu as deux méthodes, soit tu prend l'expression donnée et tu
la développe pour obtenir ton expression de f(x), soit tu factorise ton
expression de f(x).
Le plus simple est de prendre l'expression donnée :
f(x)= 1/2 [(x-4)(x-4)+48]
f(x)= 1/2 [x² - 8x + 16 + 48]
f(x)= 1/2
(x² - 8x + 64)
f(x)= 1/2x² - 4x + 32
Et voilà, bon courage et Joyeux
Noël!