F est la fonction définie sur l'intervalle (1;5) par: f(x)= ax + b - 16/x
où a et b sont des nombres réels. On admet que f est dérivable sur l'intervalle (1;5) et on note f' la fonctiondérivée de f sur cet intervalle. La courbe représentative de f, notée C, coupe l'axe des abscisses aux points d'abscisses 1 et 4, et admet une tangente horizontale au point A de coordonnées (2;4).
1.a) déterminez graphiquement f(1), f(2), f(4) et f'(2)
b) En utilisant deux des quatre résultats de la question 1. a), déterminez les valeurs des réels a et b.
2. on admet que la fonction f est définie sur (1;5) par: f(x)= -4x+20-16/x
a) calculez f'(x) puis étudiez les variations de f sur (1;5)
b) dressez le tableau de variation de f sur (1;5) en précisant uniquement les valeurs de f(1), f(2) et f(4)
c) Déduisez-en le signe de f(x) sur l'intervalle (1;5)