RESOUDRE DANS R LES EQUATIONS ET LES INEQUATIONS SUIVANTES s'vpl

 

 e^(x+1) = 1

e^(3x+1) = e^x

e^(5x) = e^(x2+1)

e^x = 1 /e^(x+1)

e^(2x−1)> 1   

e^(x2) > 1

 (e^x + 1)(e^x − 1) < 0

e^(2x) − e^(x+1) ≥ 0



Sagot :

 e^(x+1) = 1
x+1=0
x=-1

e^(3x+1) = e^x
3x+1=x
x=-1/2

e^(5x) = e^(x²+1)
x²-5x+1=0
x=0,208
x=4,791

e^x = 1 /e^(x+1)
x=-x-1
x=-1/2

e^(2x−1)> 1   
2x-1>0
x>1/2

e^(x²) > 1 
x²>0
tout x (non nul) est solution

(e^x + 1)(e^x − 1) < 0
e^(2x)-1<0
e^(2x)<1
2x<0
x<0

e^(2x) − e^(x+1) ≥ 0

e^(2x) ≥ e^(x+1)
2x
≥ x+1
x ≥ 1