Bonsoir,
M(x;racine(x))
A(2;0)
AM²=(x-2)²+x=x²-x+4
AM= racine(x²-x+4)
soit f(x)=x²-x+4= (x-1/2)²+15/4
(x-1/2)²>=0
(x-1/2)²+15/4>=15/4
et f(1/2)=15/4; donc le minimum de f est 15/4 et il est atteint pour x=1/2
La fonction racine carré est strictement croissante, sur 0, +infini, donc le minimum de racine(x²-x+4) est racine(15/4) et il est atteint pour x=1/2