[tex] \frac{sin(x)}{ \sqrt{cos(x)} }= \frac{2sin(x)}{2 \sqrt{cos(x)} } \ \ \ \ \texttt{forme : } \frac{u'}{2 \sqrt{u} }-\ \textgreater \ \sqrt{u} \\\\
\int\limits { \frac{sin(x)}{ \sqrt{cos(x)} }} \, dx = \int\limits {\frac{2sin(x)}{2 \sqrt{cos(x)} }} \, dx =2 \int\limits\frac{sin(x)}{2 \sqrt{cos(x)} } {x} \, dx =2\times- \sqrt{cos(x)} [/tex]
on en déduit la primitive:
[tex]=-2 \sqrt{cos(x)} [/tex]