Soit un triangle ABC rectangle en A tel que : AB=4 et AC=6. On considère un point M appartenant au segment [AB]. La parallèle à la droite (AC) passant par M coupe le segment [BC] en N. Vous devez déterminer la position du point M pour que l'aire du triangle MNB soit égale à la moitié de l'aire du triangle ABC. INDICATION : L'aire du triangle étant variable, vous pouvez utiliser une fonction f qui donne l'aire du triangle BMN en fonction de la distance BM = x.