Résoudre les équation données dans l’ensemble des nombres réels : 

a. (x+1)² = 4
b. (2x+1)² = x²
c. x (2x+1) = 2x
d. (-3x+1)² = 25
e. (4x-1)(5x-2)-16x²+1 = 0
f. 9/4x²+3x+1 = 0 
g. 6x+4 = (2x-5) (9x+6)
h. x²+25 = 10x

A
idez moi svp je comprends vraiment pas...


Sagot :

STIAEN
Bonjour,

a.
[tex](x+1)^2 = 4\\(x+1)^2-4=0\\(x+1)^2 - 2^2 = 0\\ \rightarrow a^2 - b^2 = (a-b)(a+b)\\ (x+1-2)(x+1+2) = 0\\ x-1 = 0 \quad \text{ou}\quad x+3 = 0\\ x = 1 \quad \text{ou} \quad x = -3\\\\ \boxed{S = \left\{-3; 1\right\}}[/tex]

b. 
[tex](2x+1)^2 = x^2\\ (2x+1)^2 - x^2 = 0\\\rightarrow a^2 - b^2 = (a-b)(a+b)\\ (2x+1-x)(2x+1+x)=0\\ (x+1)(3x+1) = 0\\ x = -1 \quad \text{ou} \quad 3x = -1\\\\ x = -1 \quad \text{ou} \quad x = -\dfrac{1}{3}\\\\ \boxed{S = \left\{-1; -\dfrac{1}{3}\right\}}[/tex]

c.
[tex]x (2x+1) = 2x\\ x(2x+1)-2x = 0\\ (2x+1-2)x = 0\\ (2x-1)x = 0\\ 2x-1 = 0 \quad \text{ou} \quad x = 0\\ 2x = 1 \quad \text{ou} \quad x = 0\\\\ x = \dfrac{1}{2} \quad \text{ou} \quad x = 0\\\\ \boxed{S = \left\{0; \dfrac{1}{2}\right\}}[/tex]

d. 
[tex](-3x+1)^2 = 25\\ (-3x+1)^2 - 25=0\\ (-3x+1)^2 -5^2=0\\ \rightarrow a^2 - b^2 = (a-b)(a+b)\\ (-3x+1-5)(-3x+1+5)=0\\ -3x-4=0 \quad \text{ou} \quad -3x+6=0\\ 3x = -4 \quad \text{ou} \quad 3x = 6\\\\ x = -\dfrac{4}{3} \quad \text{ou} \quad x = \dfrac{6}{3} = 2\\\\ \boxed{S = \left\{-\dfrac{4}{3}; 2\right\}}[/tex]

e. 
[tex](4x-1)(5x-2)-16x^2+1=0\\ (4x-1)(5x-2)+1-16x^2=0\\\\ (4x-1)(5x-2)-1^2-(4x)^2=0\\ \rightarrow a^2 - b^2 = (a-b)(a+b)\\ (4x-1)(5x-2)+(1-4x)(1+4x)=0\\ (4x-1)(5x-2)-(4x-1)(1+4x)\\ (4x-1)(5x-2-(1+4x))\\ (4x-1)(x-3)\\ 4x-1 = 0 \quad \text{ou} \quad x-3 = 0\\ 4x=1 \quad \text{ou} \quad x = 3\\\\ x = \dfrac{1}{4} \quad \text{ou} \quad x = 3\\\\ \boxed{S = \left\{\dfrac{1}{4}; 3\right\}} [/tex]

f.
[tex]\dfrac{9}{4}x^2+3x+1=0\\\\ \left(\dfrac{9}{4}x^2+3x+1\right)\times 4=0\times 4\\\\ 9x^2+12x+4 = 0\\ \rightarrow a^2+2ab+b^2 = (a+b)^2\\ (3x)^2+2\times3x\times2 + 2^2\\ (3x+2)^2=0\\ 3x+2 = 0\\ 3x = -2\\\\ x = -\dfrac{2}{3}\\\\ \boxed{S = \left\{-\dfrac{2}{3}\right\}}[/tex]

g.
[tex]6x+4=(2x-5)(9x+6)\\ 2(3x+2) = (2x-5)\times3(3x+2)\\\\ 2(3x+2)-(2x-5)\times 3(3x+2) = 0\\ (3x+2)(2-(2x-5)\times3)=0\\ (3x+2)(2-6x+15)=0\\ (3x+2)(17-6x) =0\\ 3x+2 = 0 \quad \text{ou} \quad 17-6x=0\\\\ 3x = -2 \quad \text{ou} \quad 6x = 17\\\\ x = -\dfrac{2}{3} \quad \text{ou} \quad x = \dfrac{17}{6}\\\\ \boxed{S = \left\{-\dfrac{2}{3}; \dfrac{17}{6}\right\}}[/tex]

h.
[tex]x^2+25=10x\\ x^2+25-10x=0\\ x^2-10x+25=0\\ \rightarrow a^2-2ab+b^2 = (a-b)^2\\ x^2 - 2\times x \times 5 \times 5^2=0\\ (x-5)^2 = 0 x-5 = 0\\ x = 5\\\\ \boxed{S = \left\{5\right\}}[/tex]