Sagot :
factorisation
9x²-3x+11 est impossible dans IR
9x²-3x+11=(x-a)(x-b) dans C
avec a=(1-rac(43)i)/6 et b=(1+rac(43)i)/6
9x²-3x+11 est impossible dans IR
9x²-3x+11=(x-a)(x-b) dans C
avec a=(1-rac(43)i)/6 et b=(1+rac(43)i)/6
9x²-3x+11
= 9(x² - x/3) + 11
= 9(x² - x/3 + (1/6)² - (1/6)²) + 11
= 9.(x - 1/6)² - 9/36 + 11
= 9.(x - 1/6)² - 1/4 + 11
= 9.(x - 1/6)² + 43/4 : somme de 2 quantités positives et donc 9x²-3x+11 > 0 pour tout x.
"9x²-3x+11" ne s'annule pour aucune valeur de x dans R, on ne peut pas factoriser "9x²-3x+11" (en se limitant aux réels).
Sauf distraction.
= 9(x² - x/3) + 11
= 9(x² - x/3 + (1/6)² - (1/6)²) + 11
= 9.(x - 1/6)² - 9/36 + 11
= 9.(x - 1/6)² - 1/4 + 11
= 9.(x - 1/6)² + 43/4 : somme de 2 quantités positives et donc 9x²-3x+11 > 0 pour tout x.
"9x²-3x+11" ne s'annule pour aucune valeur de x dans R, on ne peut pas factoriser "9x²-3x+11" (en se limitant aux réels).
Sauf distraction.