Comment montrer que X3 - X2 - 4=(X-2) (X2 + X + 2)?
(chaque chiffre tout de suite après le X représente une puissance)
Je cherche depuis hier:j'ai essayé de factoriser X2 - 4; je trouve bien le facteur commun 
(X-2) (X+2), ce qui donne l'équation
X3 - (X-2) (X+2) et à partir de là rien ne va plus.
Merci.


Sagot :

X3-X2-4=X-4
(X-2)x(X2+X+2)=XxX2+X2+X+2-2xX2-2xX-2x2=X3+X2+X+2-2X2-2X-4=6X-X5-4=X-4
je sais pas si c'est bon, parce que je me suis embrouillée, mais , je pense qu'il faut faire en dévellopant,puis en simplifiant
X3-X2-4=X-4
(X-2)x(X2+X+2)=XxX2+X2+X+2-2xX2-2xX-2x2=X3+X2+X+2-2X2-2X-4=6X-X5-4=X-4

sa me semble correct