Sagot :
L'ensemble des solutions de ce systèmes est l'ensemble des x tel que (-x^2 + 9 x + 10 > ou égal à 0) et (- 2 x + 15 < ou égal à 0).
On cherche les racines de l'équation -x^2 + 9 x + 10 = 0 dont delta = 121 càd x1 = 10 et x2 = -1, et comme le facteur de x^2 est négatif donc -x^2 + 9 x + 10 > ou égal à 0 est vraie pour les x entre les racines, donc pour [-1 ; 10].
On cherche aussi la racine de - 2 x + 15 qui est 15/2 , donc - 2 x + 15 < ou égal à 0 est vraie pour x appartenant à [15/2 ; + infini[, donc l'ensemble des solutions du système est l'intersection de [-1 ; 10] et [15/2 ; + infini[ càd [15/2 ; 10]
On cherche les racines de l'équation -x^2 + 9 x + 10 = 0 dont delta = 121 càd x1 = 10 et x2 = -1, et comme le facteur de x^2 est négatif donc -x^2 + 9 x + 10 > ou égal à 0 est vraie pour les x entre les racines, donc pour [-1 ; 10].
On cherche aussi la racine de - 2 x + 15 qui est 15/2 , donc - 2 x + 15 < ou égal à 0 est vraie pour x appartenant à [15/2 ; + infini[, donc l'ensemble des solutions du système est l'intersection de [-1 ; 10] et [15/2 ; + infini[ càd [15/2 ; 10]