En travaillant sur des triangles équilatéraux, Romane conjecture que " la somme des distances entre un point R est à l'intérieur d'un triangle équilatéral et les trois sommets est égal à une constante" Pouvez-vous confirmer ou infirer cette conjecture ?
En travaillant sur des triangles équilatéraux, Ernest affirme que, l'aide de calculs d'aires : On peut démontrer que "la somme des distances entre un point M à l'intérieur d'un triangle équilatéral et les trois côtés est égale à une constante" A-t-il raison ?