Quelle est la dérivée de 3/x svp ?



Sagot :

XXX102
Bonsoir,

On a :
[tex]f\left(x\right) = \frac 3x = 3x^{-1}[/tex]

On sait que la dérivée de x puissance n est :
[tex]nx^{n-1}[/tex]
De plus, si on a :
[tex]g\left(x\right) = kh\left(x\right)[/tex]
(k étant un réel), alors on a :
[tex]g'\left(x\right) = kh'\left(x\right)[/tex]

D'où
[tex]f'\left(x\right) = 3\times \left(-1\right) x^{-2} = -3x^{-2} = -\frac 3{x^2}[/tex]
[tex]( \frac{u}{v} )^'= \frac{u'v-uv'}{v^2}[/tex]

[tex]( \frac{3}{x} )^'= \frac{0-3}{x^2} = -\frac{3}{x^2}[/tex]

En espérant t'avoir  aidé.