Qu'est-ce que l'espace en maths ???

Sagot :

En mathématiques, un espace est un ensemble muni de structures supplémentaires remarquables, permettant d'y définir des objets analogues à ceux de la géométrie usuelle. Les éléments peuvent être appelés suivant le contexte points, vecteurs, fonctions, ... En voici quelques exemples.

Un espace topologique est un ensemble muni d'une structure très générale (la topologie), qui permet de définir la notion de voisinage d'un point. Cette structure offre le langage pour définir les notions de continuité et de limite. Un espace métrique est un espace topologique dont la topologie est définie au moyen d'une distance. Cette dernière permet d'estimer la taille d'un ensemble (diamètre), la proximité par rapport à un point, etc. Un espace uniforme est un espace topologique dont la topologie est définie par un ensemble d'écarts finis (plus une condition de séparation). Les espaces uniformes comprennent notamment les groupes topologiques. Un espace vectoriel est un ensemble dont les éléments, les vecteurs, peuvent s'additionner et être multipliés par des scalaires. Sur un corps donné, les espaces vectoriels se classifient par leur dimension, par définition le cardinal de n'importe quelle base. Un espace affine est de manière informelle un espace vectoriel pour lequel la position du vecteur nul a été oubliée. Cette structure autorise à parler de linéarité. Un ensemble muni à la fois d'une structure d'espace vectoriel et d'une structure d'espace topologique, compatibles entre elles en un certain sens, s'appelle un espace vectoriel topologique. Un espace vectoriel normé est un espace vectoriel topologique dans lequel on dispose d'une notion de longueur d'un vecteur, une norme, ce qui en fait en particulier un espace métrique. Mais certains espaces vectoriels topologiques sont métrisables sans que pour autant leur topologie puisse être définie par une norme. Un espace vectoriel topologique localement convexe est un espace vectoriel topologique pour lequel la topologie est définie par un ensemble de semi-normes. Un espace de Minkowski est un espace vectoriel de dimension 4, muni d'un produit interne (multiplication entre vecteur), de signature (+, -, -, -). Ce produit interne permet de définir la notion d'orthogonalité. Interprété en tant que distance à un point donné (bien que ce ne soit pas une distance au sens mathématique), ce produit interne sépare l'espace en deux parties: l'espace des points pour lesquelles une distance existe, et l'espace des points 'inaccessibles'. Interprétés dans le cadre de la relativité restreinte, les points de cet espace temps (position, date) inaccessibles sont ceux qu'il est impossible d'atteindre sans dépasser la vitesse de la lumière. Un espace vectoriel symplectique est un espace vectoriel de dimension finie, muni d'une forme bilinéaire antisymétrique et non dégénérée. En théorie des probabilités (mais également en théorie de la décision), l'espace des évènements élémentaires est appelé l'univers. C'est, en quelque sorte, l'espace de travail. L'univers muni d'une mesure sur une tribu forme un espace probabilisé.