Sagot :
1. 2x²-8=0
2x²=8
2x²/2=8/2
x²=4
x=racine carré de -4 ou racinecarré de 4
2) 3x²+12=0
3x²=-12
3x²/3=12/3
x²=4
x= racine carré de -4 ou racine carré de 4
1) 2x² - 8 = 0
Δ = b² - 4ac
Δ = 0² - 4 x 2 x (-8)
Δ = 64 > 0 donc il existe deux solutions
x1 = (-b - √Δ) / 2a = (0 - √64) / 4 = -8 / 4 = -2
x2 = (-b + √Δ) / 2a = (0 + √64) / 4 = 8 / 4 = 2
S = {-2 ; 2}
2) 3x² + 12 = 0
Δ = b² - 4ac
Δ = 0² - 4 x 3 x 12
Δ = -144 < 0 donc aucune solution
3) (x - 1)² - 9 = 0 <= présence d'une identité remarquable
x² - 2*x*1 + 1² - 9 = 0
x² - 2x + 1 - 9 = 0
x² - 2x - 8 = 0
Δ = b² - 4ac
Δ = (-2)² - 4 x 1 x (-8)
Δ = 4 + 32
Δ = 36 > 0 donc 2 solutions
x1 = (-b - √Δ) / 2a = (2 - √36) / 2 x 1 = (2 - 6) / 2 = -4 / 2 = -2
x2 = (-b + √Δ) / 2a = (2 + √36) / 2 x 1 = (2 + 6) / 2 = 8 / 2 = 4
S = {-2 ; 4}
4) (1 - 3x)² = 4 <= présence d'une identité remarquable
1² - 2 x 1 x 3x + (3x)² = 4
1 - 6x + 9x² = 4
9x² - 6x + 1 - 4 = 0
9x² - 6x - 3 = 0
Δ = b² - 4ac
Δ = (-6)² - 4 x 9 x (-3)
Δ = 36 + 108
Δ = 144 > 0 donc il existe deux solutions :
x1 = (-b - √Δ) / 2a = (6 - √144) / 2 x 9 = (6 - 12) / 18 = -6/18 = -1/3
x2 = (-b + √Δ) / 2a = (6 + √144) / 2 x 9 = (6 + 12) / 18 = 18/18 = 1
S = {-1/3 ; 1)