Question 1
Justifier qu'il est plus facile de flotter en mer calme qu'en rivière calme (Penser à comparer la masse volumique
de l'eau salée et celle de l'eau douce).
Question 2
La poussée d'Archimède est-elle la même quand quand on flotte dans de l'eau avec les bras en dehors de l'eau
ou quand les bras sont sous l'eau ? (Justifier la réponse en lien avec le principe de la poussée d'Archimède)
Question 3
J'ai à ma disposition autant de ballons de baudruche que je veux.
Chaque ballon gonflé, avec sa ficelle, a une quantité de matière égale à sa masse,
c'est-à-dire m= 4,5 g = 0,0045 kg.
Son volume, une fois gonflé, forme une sphère de rayon 15 cm = 0,15 m, donc
un volume de 0,014137 m³.
A l'aide de ces ballons, je souhaite soulever un être humain d'environ 75 kg (un
peu comme dans le dessin animé "Là-haut").
Données :
Masse volumique de l'air : p= 1.2 kg/m³
Gravité (Phénomène d'attraction) sur la planète Terre, g = 10 N/kg
1. Calculer la valeur du poids, P₁, du ballon gonflé
2. Calculer la valeur de la poussée d'Archimède, A, exercée par l'air ambiant sur un seul ballon. En effet,
l'air ambiant est un fluide qui agit sur le ballon de baudruche en vol (flottaison dans l'air), un peu comme
l'eau agit sur un bateau qui flotte.
3. En utilisant les questions 1 et 2, quelle est la valeur de la force résultante qui tend à pousser vers le haut
un seul ballon?
4. On veut compenser le poids de l'Homme par des ballons. Calculer la valeur du poids, P2, de l'Homme.
5. Je prends x ballons de façon à ce que, une fois attachés à la ceinture de notre Homme, notre Homme
soit en équilibre, en suspension dans l'air.
a. Quelle relation peut-on écrire ?
b. Quel calcul donne la valeur de x, le nombre de ballons nécessaire ?
c. Tu penses cela possible?